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Abstract 

A simple procedure for the determination of the 
structure normal to the basal plane of layered com- 
pounds based on the now ubiquitous maximum- 
entropy method is presented. It is illustrated by the 
analysis of room-temperature (00l) elastic neutron- 
scattering experiments performed on two graphite 
intercalation compounds, stage 3 C44.6MOC15 and 
stage 1 KC24(ND3)4. 3. The former example is quite 
simple, requiring only a crude heuristic model to 
determine the structure-factor phases. The latter 
shows good sensitivity to the orientation of the ND3 
threefold axis with respect to the basal plane, thus 
providing its first direct determination. 

1. Introduction 

The properties of many layered materials, such as 
graphite, transition-metal dichalcogenides and layer 
silicates, can be substantially altered by the inter- 
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calation of various guest species into the interlayer 
region (gallery) of the host. Because of the lack of 
single crystals and the prevalance of stacking faults, 
complete structural determinations of these systems 
are seldom made. However, owing to the 'platelike' 
nature of the individual pieces, it is often possible to 
fabricate oriented specimens in which the c axes (i.e. 
the direction perpendicular to the basal planes) of 
the pieces are well aligned, but the in-plane crystal- 
lographic axes are not. One can then use X-ray or 
neutron scattering to obtain scans along the e direc- 
tion - (00l) scans - which reflect important structural 
information in these materials, such as the distance 
between guest and host layers, the guest density 
within the galleries, the orientation of polyatomic 
guests and, for graphite intercalation compounds, 
the stage. Furthermore, because of the complicated 
phase diagrams of these materials, such information 
is required before any meaningful interpretation of 
other data can be made. Thus, one requires a method 
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by which this information can be obtained quickly 
and reliably. Since this problem is one dimensional, 
the maximum-entropy method (MEM) (Jaynes, 
1957) provides such a method. While the MEM is 
often associated with large and complex compu- 
tations (Bricogne, 1984), this is certainly not the case 
when determining the c-axis structure of layered 
compounds. Rather one simply uses the MEM in 
conjunction with a rather crude model as opposed to 
least-squares fitting procedures for which one has to 
be reasonably realistic. Here we illustrate the appli- 
cation of this method with two rather different 
examples, stage 3 MoCI5 intercalated graphite and 
stage 1 K(ND3)4.3 intercalated graphite. 

A number of experiments (Suzuki, Furukawa, 
Ikeda & Nagano, 1983; Suzuki, Santodonato, 
Suzuki, White & Cotts, 1991) have shown that 
MoC15-intercalated graphite undergoes various phase 
transitions one of which takes place at Tc = 480 K in 
the stage 3 compound and shows a A-type anomaly. 
The MoC15 intercalated layers are uncorrelated with 
respect to one another. Our interest presently resides 
mainly in the fact that it is a fairly simple example 
for the MEM. 

Alternatively, X-ray (Qian, Stump, York & Solin, 
1985; Qian, Stump & Solin, 1986) and neutron (Fan, 
Solin, Neumann, Zabel & Rush, 1987) scattering 
experiments have shown that the potassium- 
ammonia layer in the stage 1 graphite intercalation 
compound KC24(ND3)4.3 is a two-dimensional liquid 
at room temperature. The in-plane structure of the 
intercalate layer displays loosely bound planar 
K(ND3)4 molecular complexes, while the remaining 
ammonia molecules are essentially free. In addition, 
a quasi-elastic neutron-scattering study (Neumann, 
Zabel, Rush, Fan & Solin, 1987) indicates that, in 
the protonated compound, the NH3 threefold axis 
lies parallel to the carbon plane. It is, however, 
essential to obtain a clearer view of the orientational 
distribution of the ammonia C3 axis, since an 
inelastic scattering experiment (Neumann, Zabel, 
Fan, Solin & Rush, 1988) shows that the (001) 
longitudinal phonons couple to a libration of the 
ammonia molecule, the exact nature of which 
remains to be understood. 

The experimental aspects are discussed in §2, while 
§3 provides a brief reminder of the method and its 
adaptation to our specific problem.* Results are 
summarized in §4. 

2. Experimental 

Table 1 shows the integrated intensities of the (001) 
peaks obtained at room temperature using the BT4 
triple-axis spectrometer at the Neutron-Beam Split- 

* A g o o d  i n t r o d u c t i o n  to  the  m a x i m u m - e n t r o p y  p r o c e d u r e  is 

g i v e n  b y  F r i e d e n  ( 1 9 7 2 ) .  

Table 1. Integrated intensities and uncertainties after 
subtraction of background and sample can 

contributions 

C~.~MoCI5 KC24(ND3)4 33 
I ~ & ~ & 
I 672 9 200 3 
2 79 3 2413 I1 
3 97 13 430 6 
4 1618 4 492 6 
5 3298 70 317 5 
6 19 7 300 3 
7 21 12 84.9 3.4 
8 0 7 205 6 
9 1322 44 58.7 3.9 
10 1387 45 135 16 
11 21 7 60 16 
12 6 5 
13 17 7 
14 741 33 
15 207 18 
16 15 9 
17 0 9 

Core Reactor at NIST. A Cu (220) monochromator  
was used to obtain an incident energy of 150 meV. 
No analyser was used. The relatively large energy 
was necessary to reach the large wavevector at which 
the l = 17 reflection in the first case, and the l = 11 
reflection in the second could be measured. The 
integrated intensities were obtained by fitting the 
individual peaks to Gaussian line shapes, and 8~ is 
the statistical uncertainty obtained via this pro- 
cedure. 

In the case of MoC15 a least-squares fit of a model 
to these results is feasible, and indeed the X-ray data 
(Suzuki et al., 1991) were thus interpreted, but we 
want to address this problem as if we were in a 
situation in which we needed to do a quick structure 
determination with as few a priori assumptions as 
possible. 

In the case of potassium-ammonia intercalated 
graphite, on the other hand, a model suitable for a 
least-squares fit analysis would require almost as 
many parameters as data. This is a good candidate 
for the maximum-entropy method since it determines 
the most likely solution, rather than a unique one. 

3. The method 

The result of a neutron elastic scattering experiment 
can be expressed as 

c/2 

Ft = c Z  f n~b~p~,(z)etcosq:dz (1) 
o 

where FI is the structure factor of the (00l) peak, ql = 
2~rl/c, with c being the lattice constant, e l = - - 1  
stands for a phase factor in a centrosymmetric 
system, b~, is the scattering length of atom of type ~,  
n~, is the number of atoms of type/~ in the cell, p~(z) 
is the probability distribution function of an atom of 
type/~, and C = 2Fo/~,n~b~ is a normalization con- 
stant. 
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In order to do numerical computations, the cell 
must be divided into pixels, and the integral in (1) 
replaced by a discrete sum, thus 

Fl = C ~ Yn ,  b~,p,(zi)e/cosqzzfl~ (2) 
i=1 /z 

where 6z is the size of a pixel, u is the number of 
pixels and z~ is the coordinate of the middle of 
pixel i. 

Let 

~,n~,b~,p~(zi) u~z 
P i  : Z,n~,b~, (3) 

and 

C E t c o s  qzz i  
d,, - (4) 

p 

Here Pi is the discretized nuclear density which is 
analogous to the electron density relevant to an 
X-ray experiment. 

These definitions yield 

F/= ~'. pidu (5) 
i = l  

where {dil} is a set of known constants, and the 
unknown distribution {p~} is what we are seeking. 

Obtaining the most likely set of {p;}, the MEM 
(Jaynes, 1957; Frieden, 1972; Prince, 1989) requires 
maximizing the entropy S where 

S = - ~p~lnp~ (6) 

given the constraints 

F/(°bs) - (7"1 ~-~ F/(calc) ~< F/(°bs) -at- orl (7) 

where FI (¢al¢) is calculated from (5), Fz (°bs) is obtained 
from the experiment, and or/is the uncertainty. 

This is a classical numerical problem of linearly 
constrained maximization, done by an iterative 
refinement of the Lagrange multipliers A/associated 
with the constraints,* where 

p i  = exp(EAld,) and F/(calc) ~ - - E d ,  exp(2A,.d;,.). 
1 i r 

(8) 
In that respect, the normalization condition, 

~i ~= IPi-" P, which results from the definition of p, in 
(3), is convenient as it allows, as a starting point, 
p!Ol = 1, '¢i ~ [1,u], which corresponds to all initial 
Lagrange multipliers af °1, Vl ~ [0,1max] set to 0. This 
normalization condition does not have to appear 
explicitly as a constraint, if F~ = o is included, as it is 
implied by the definitions of C, p; and du. At each 
iteration, the Lagrange multipliers are modified by a 
Newton-Raphsson linearization of F[ ca~c) with 
respect to A~. The differences 6F/(calc)tn+ 1] which 

* Or any equivalent method,  see e.g. Prince (1989). 

induce the variations ~Af "+ ,l for step [n + 1] are set 
by 

¢~F/(calc)[n + 1] _. F/(calc)[n] __ F/(obs) __ or/ 

for F~ ( ~ ) [ ' l  > F/(°bs) + (7"1, 

6F/(calc) tn + I]  : Fz(=al=)[.] _ F/(obs) -I- or/ 

for F~ (c~c)t"] < F[ °b~) - or/, 

~F/(calc)[n + l] : 0 

f o r  F/(°bs) --  or/ < F~ (¢a~¢)['] < F/(°bs) + orl. 

(9) 

Here, in the two first lines the constraints are 
unsatisfied, whereas, in the third they are satisfied. 
This idea of (un)satisfied constraints, is crucial 
because if one maintains already satisfied constraints 
in the refinement procedure, it usually results in 
'pulling' many of the calculated F/(calc) values much 
closer to the observed ones than warranted by error 
bars, thus creating great sensitivity to noise.* The 
procedure is stopped when all constraints are 
satisfied. 

In order to be able to carry out this procedure, Fo 
and e/need to be established, or at least estimated. 
This is done using a model which is only heuristic, 
and which can be therefore much cruder than one 
meant for a least-squares fit procedure. This is illus- 
trated in the next section. 

4. Results and discussion 

MoCls-GIC 

Fig. 1 displays p(z) for z = 0 to c/2. Here the label 
'Exp.' refers to the p(z) obtained from the MEM 
using the data from Table 1, with el= + I V I E  
[1,17] and F0 = 7000 the smallest value for which the 
procedure would converge. Convergence is obtained 
in 18 steps (ca 5 s user time on a Gould NP1 with u 
= 1000). Three maxima occur at z = 0, z--- 3.3 and z 

6.6 A, with the third peak being rather ill defined. 
It is quite natural, therefore, to attribute the first and 
second peaks to carbon planes and the third to a 
chlorine plane. The molybdenum lies at c/2 = 7.95 A. 
The symmetry with respect to z = 0 thus gives a total 
of three carbon planes betwen the intercalated galler- 
ies as expected for a stage 3 sample. The inclusion of 
a uniform translational disorder (Debye-Waller 
factor) of 0.3 A provides the intensities given in 
Table 2, along with the signs of el. The labels 'Calc.' 
and 'Exp., g shown in Fig. 1, refer to the p(z) 

* Frieden (1972) dealt with this problem differently by introduc- 
ing noise explicity with what amounts  to a statistical assumption 
that the mean noise is equal to zero. This is perfectly correct  if, as 
in image-reconstruct ion problems, one is dealing with large quan- 
tities o f  experimental  data,  unfor tunate ly  not  the case here. 
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Table 2. Stage 3 MoC15 (00l) calculated intensities, 
uncertainties and el 

1 Ii 8, et 
0 3 9 5  11 1 

1 9 . 0 0  0 . 3 9  1 

2 0 . 7 4 7  0 . 0 4 1  - I 

3 5 .01 0 . 1 5  - 1 

4 4 7 . 3  1.6 1 

5 2 6 5 . 8  7 .5  1 

6 0 . 4 0 0  0 . 0 3 6  I 

7 0 , 4 4 4  0 . 0 3 3  - 1 

8 2 . 2 8 4  0 . 0 4 8  - 1 

9 53 .3  1.6 l 

10 108 .2  3.1 1 

11 1 . 0 7 8 2  0 . 0 0 8 2  - 1 

12 0 . 0 1 2 4  0 . 0 0 2 2  I 

13 1 .141 0 . 0 1 7  - I 

14 3 5 . 4  1 .0  I 

15 1 8 . 7 6  0 . 5 6  1 

16 0 . 3 4 3 3  0 . 0 0 5 5  - 1 

17 0 . 0 2 2 5  0 . 0 0 2 3  - I 

obtained from these calculated intensities and el, and 
on the experimental intensities with the same values 
of et as in the calculated case, respectively. The 
improvement for the 'Exp., e' case is clear. Four well 
defined peaks are observed at z = 0, z = 3.3, z = 6.6 
and z = 8 A, with half-widths in the range 0.2-0.3 A. 

Fig. 2 compares the distribution p(z) with that 
obtained after increasing the uncertainties 6l by a 
factor of 4, i.e. after relaxing constraints. Note that 
the smaller peaks tend to decrease with increasing 
uncertainties. It should also be pointed out that the 
uncertainties as defined by the experiment are stand- 
ard deviations estimated from the fit of a Gaussian 
function to the experimental profiles, whereas the 
maximum-entropy procedure considers the uncer- 
tainties as absolute boundaries, a much stricter 
requirement. 

Fig. 3 compares p(z), for F0 = 8000, the smallest 
value for which the MEM procedure will converge 
with the set o f ,  given by the calculation, and for F0 
= 12000. The main features of the distribution 

9" 
81 

. _  - 

. ~  5 -  

v 4- %-. 
" (  ~. 

2~ 

0~ 
2 

1 2 

-- Exp., ~ ' 
• . Ex . 
~ c_a~__ _ ;  

i~'~,~\ ... ".  / "  

I 1 l I u I u l n I I t I u u I u n n u I u I I I I 

4 5 6 7 8 

Z (A) 

Fig. 1. Nuclear density p(z) for stage 3 MoCb-GIC obtained by 
the MEM for the model described in the text (continuous line), 
the experiment assuming all structure factors are positive 
(dotted line) and the experiment using the structure-factor signs 
obtained from the model (dashed line). 

remain unchanged, proving that this is not a crucial 
factor; in fact it can be considered as simply a 
contrast variation device. 

K(NDs)4.s-GIC 

Monte-Carlo integrations of (1) were performed 
with test probability distributions. The carbon, 
potassium and ammonia center of mass distributions 
were chosen as Gaussian, centered respectively at z 
= 0, z = c/2 and z = c/2 with half-widths set at 0.2 A. 
The deuterium distribution around the ammonia 
threefold axis was chosen as isotropic, whereas 0, the 
angle between the c direction and the ND3 axis was 
set first at 0, then 45 and 90 ° with half-width 10 °. 
This was done for l - -0 -11 ,  thus providing an esti- 
mate for Fo and showing that et = + 1, Vl E [0,11]. 
The computed structure factors were then fed into 
the MEM procedure in exactly the same way as the 
experimental data, thus yielding a total of four p(z) 
distributions, one for each value of 0, and one for 
the experiment (Fig. 4). It was also checked that 

s 1 : ' '  Exp. dx4!  

4 

2" 

i , , , , i . . . .  i . . . . . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i 
0 1 2 3 4 5 6 ? 

z (A )  

Fig. 2. Comparison of the results for MoCls obtained with the 
experimental uncertainties ~ (continuous line), and with these 
uncertainties multiplied by a factor of 4 (dotted line). 

4 ~ Fo=8000 

, , , ' i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  

1 2 3 4 5 6 7 8 

Z (A )  

Fig. 3. Nuclear densities obtained for MoCI5 for two values of Fo: 
8000 (continous line) and 12 000 (dotted line). 
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changing the estimate of F0 for the experimental set 
within reasonable limits did not significantly alter the 
result (Fig. 5). 

The computed distribution for 0 = 90 ° displays a 
maximum at 2.5 A corresponding to the width of the 
ammonia molecule (Fig. 6) whereas the broadening 
of the peak at 3.34 A for 0 = 0 ° is caused by the 
'height' of the molecule. The large peak at z = 0 is 
the contribution from the carbon plane. The experi- 
mental result agrees most closely with the 0 = 90 ° 
case, thus pointing to an ND3 threefold axis lying in 
plane. At this point, questions may arise from the 
additional 'bump' at z = 0.75 A. Several p(z) distri- 
butions were obtained using uncertainties 61 which 
have been increased by factors of 2 and 4. As for the 
MoC15 case the small bumps disappear with increas- 
ing uncertainties. Again, this occurs because the 81 
values given in Table 1 are the statistical uncertain- 

7 2 

6- r - - -  0=0 o 
- - - 0 = 4 5  ° 

5: 0=90° 
Exp. 

4 

~... . . . .~ j ' -. 
0 

, , , , i , , , , i , , , , i , , , , i , , , , i , , , , i , , , 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Z (A) 

Fig. 4. Nuclear density p ( z )  for stage 1 K ( N D 3 L r G I C  obtained 
by the MEM for the experiment assuming all structure factors 
are positive (continuous line) and for the model with the ND3 
threefold axis lying in plane 0 = 90 ° (dotted line), at a 45 ° angle 
(dashed line) and normal to the basal plane, 0 = 0 ° (dot-dashed 
line). 

[ - -  Fo=20000 ] 

..i~it f - -  Fo=5000 [ 
ii!,1 j...,o_-,oooo, 

3 \ ?: 

o , ~ - ' Y T . ' U T . U -  , , 

0.0 0.5 tO t5 2.0 2.5 5.0 
z(A) 

Fig. 5. Nuclear densities obtained for K(ND3)4.3 for three values 
of Fo: 5000 (continuous line), 10000 (dotted line) and 20000 
(dashed line). 

ties obtained from a least-squares fitting procedure, 
but in the MEM they have been treated as absolute 
boundaries. Therefore, it is not unwarranted 'dab- 
bling' with data to multiply these uncertainties by 
some factor but it is in fact necessary to do so in 
order to ascertain the reliability of any feature 
observed in the p(z) obtained using this procedure. 

5. Concluding remarks 

We have shown that the MEM provides a quick 
method to visualize in real space the results of dif- 
fraction experiments performed on layered materials 
yielding a good representation of the c-axis profile. 
The algorithm is universal, so that one does not have 
to write or modify computer programs for each new 
compound. The actual numbers obtained, such as 
the relative intensities of the real space peak or their 
widths, are rather reliable in spite of the fact that an 
experimental value of F0, which has an influence on 
contrast, has not been determined. One should keep 
in mind, however, that here p(z) has been obtained in 
the absence of any model. All that is required are the 
measured intensities of the (00/) reflections. When 
using a least-square fit, one must supply a physical 
model thereby adding considerable information to 
the experimental results. If the 'correct' model has 
been chosen, this additional information should 
result in more precise results than those obtained 
using the MEM. 

More specifically, this study proves that the MEM 
is not only sensitive to the ND3 orientation in the 
case of potassium-ammonia intercalated graphite 
but provides direct evidence of its orientation. The 
simplicity and versatility of this approach as shown 
in the case of stage 3 MoCIs-GIC should ensure its 
applicability to a wide range of oriented layered 
systems. 

The authors thank M. Suzuki for kindly providing 
an MoC15-GIC sample. This work was supported in 
part by NATO grant number CRG 910916. 

0 = 90 ° 

c,i 

, 

0 = 0  ° 

GRRPHITE PLRME 

0.3 A 

Fig. 6. Positions of the atoms of the ammonia molecule with 
respect to the graphite basal plane (z- -0)  with the ammonia 
threefold axis lying in plane (0 - -90  °) and normal to the basal 
plane (0 = 0% 
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Abstract 

The structure of lovozerite is derived from perovs- 
kite. For 24 members of the lovozerite family an 
aristotype is postulated. The method of quantitative 
comparison using the concept of mappings is applied 
to the lovozerite family using the aristotype as a 
'structural unit'. The method is extended to rela- 
tionships of symmetry-type II, i.e. the derived struc- 
ture and the aristotype have only a common 
subgroup, the remaining non-common symmetry of 
the derived structure is used as 'distribution' symme- 
try for the structural unit. The numerical results are 
discussed in detail. 

Introduction 

Lovozerite is a silicate structure with the general 
composition M1M22M33M43 [Si6Oi8] where M1, 
M2, M3, M4 are different metals and Si6018 rep- 
resents a chair-form ring silicate group. The com- 
pounds either occur as minerals or they may be 
synthetic. Details are given in Tables 3 and 4. 

Recently one of the authors of the present work 
(Tamazyan & Malinovsky, 1990) showed that the 
structure of lovozerite can be regarded as a structural 
unit or motive which can be found in a series of 
different structures thus defining the lovozerite 
family. It was recognized that the structural unit will 
be repeated by translations, centres of symmetry, 
different screw and rotation axes and glide planes; 
the symmetry operations used for the repetition may 
be regarded as 'distribution' symmetry. 

0108-7681/93/020153-07506.00 

In addition, the other two authors (Burzlaff & 
Rothammel, 1992) proved that structural relations 
can be described by application of the concept of 
mappings: a pair of matrices (A, S) is used to map 
the lattices, the symmetry operations and the posi- 
tions of the atoms of two related structures onto 
each other. This procedure gives rise to the introduc- 
tion of 'figures of merit' that allow the degree of 
relationship to be characterized by numerical values. 
In the first step only those relations that use transla- 
tions as distribution symmetry were discussed. 

It is the intention of this paper to combine both 
ideas: 

(i) the concept of mapping will be extended to 
structural relations with all types of distribution 
symmetry; 

(ii) this procedure will be applied to structures of 
the lovozerite family. 

Derivation of the lovozerite structure 

The members of the lovozerite-type family which 
possess the highest symmetry occur in space group 
R3m; it is convenient to use rhombohedral axes to 
describe the structure. The lovozerite structure may 
be derived from perovskite (e.g. CaTi03) with space 
group Pm3m, Ca on l(a) m3m (0, 0, 0), Ti on l(b) 

I 1 1 1 m3m (~, 5, 5) and O on 3(c) 4/mm.m (0, ~, ~) (cf. Fig. 
l a); eight unit cells of perovskite lead to a unit cell of 
lovozerite by doubling the lattice parameter of per- 
ovskite without any shift, small deviations from 
cubic metric occur with respect to the angles, a is 
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